

Prof. Congduc Pham http://www.univ-pau.fr/~cpham Université de Pau, France

Congduc.Pham@univ-pau.fr

European

Horizon 2020 European Union funding for Research & Innovation

Paving for the next 10 years of innovation in IoT and AI

Advanced and disruptive IoT/AI technologies targeting the smallholder community for increased resilience

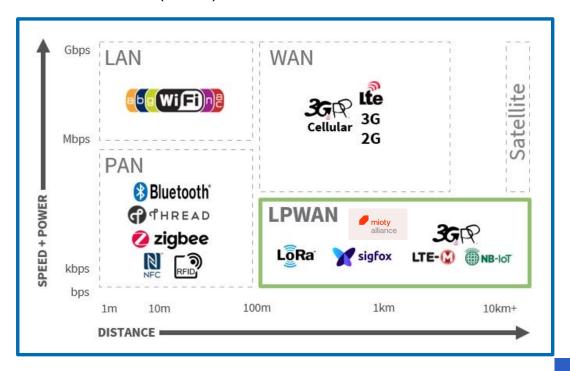
Wireless Sensors Made Simple for agroecology & sustainable agriculture

LPWAN?

• LPWAN? What is it exactly?

Lightwave Performant in Wide Area Network (WAN)

Low Power WAN


Low Probability for WAN

Light Packets in WAN

Loss-free Protocol for WAN

- LPWAN: Low-Power Wide Area Network
- Again, let's take a quick quizz! Check the correct answers...

The revolutionary LPWAN approach

ONRAMP

The come-back of LPWAN

The rise of LPWAN

History of LPWA

L@Ra Alliance

2010s

2014-2016

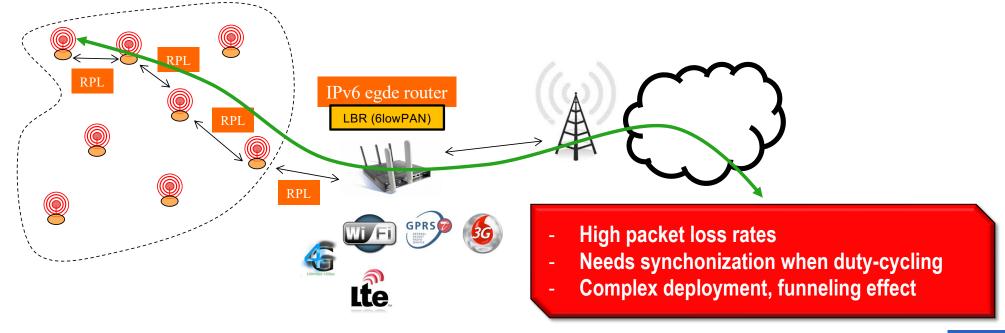
LPWAN-like

1990-2000s

2G

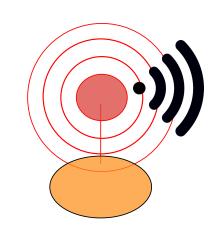
2000s

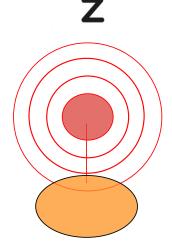
LPWAN

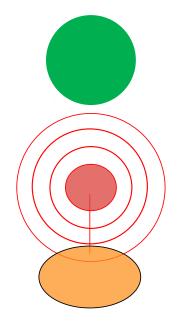

Image credit: https://www.link-labs.com/blog/past-present-future-lpwan

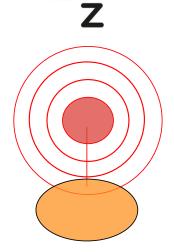
2000-2015: 15 years of multi-hop routing?

- anr®
- How to use short range radios (e.g. IEEE 802.15.4) for long distance?
- Lot's of scientific contributions!
- The golden age of multi-hop wireless sensor networks!






PROGRAMME DE RECHERCHE AGROÉCOLOGYE ET NUMÉRIQUE

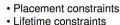

Managing energy? A nightmare!


Academics vs Industries

Let's go back to reality!

Millions of sensors, self-organizing, selfconfiguring, with QoS-based multipath routing, mobility, and ...

Complex systems that are collaborating



500 sensors, STATIC deployment, but need to have RELIABILITY, **GUARANTEED LATENCY for** monitoring and alerting. MUST run for 3 YEARS. No fancy stuff! CAN I HAVE IT?

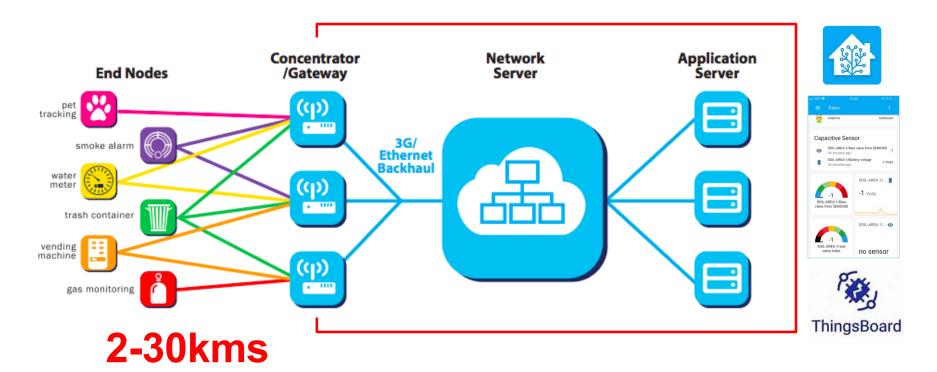
Simple systems that simply send data → telemetry

From Peng Zeng & Qin Wang

2010: a new start for LPWAN

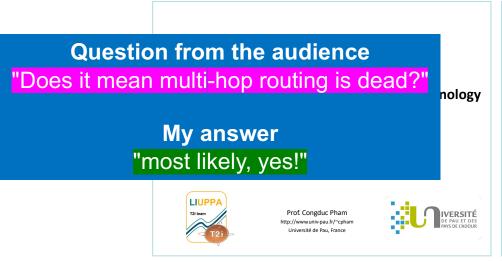
SigFox (2009) then LoRa (2012, from Cycleo)

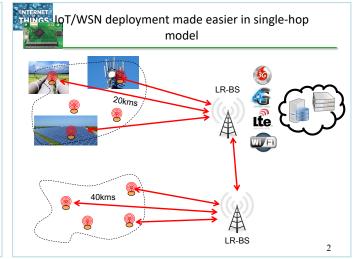
- ② 2 French innovations!
- Unlicensed band (although it is not mandatory)
- Sub-GHz (again, although it is not mandatory)
- Centralized, star topology, gateway-centered
- Low data rate for lower power and, of course, longer range!
- Battery-operated with several years of autonomy
- Several kms can be achieved when transmitting at 14dBm (~25mW)
- ALOHA-based medium access -> no medium access control at all!



Typical LPWAN networks

Below, a typical architecture taking graphics from LoRa networks

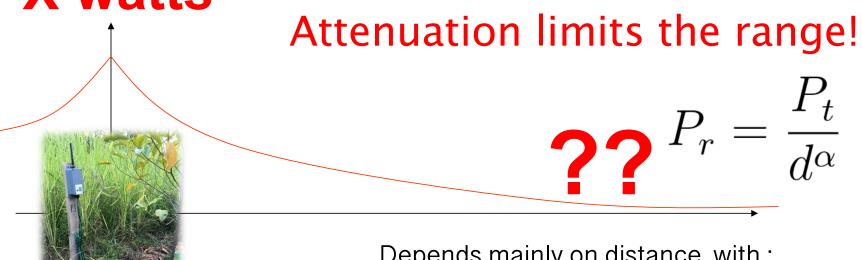




RESCOM, January, 12th, 2016, INRIA Lille

• Talk: "Low-power, Long-range WAN for IoT: a technology overview"

- Contributions on pure multi-hop routing decreased since 2015...
- A shift in research from many foundational theoretical/simulation works to fewer, more practical, deployment-oriented researches



LPWAN big challenge: signal attenuation

X watts

Depends mainly on distance, with:

- P_t = transmitted power
- P_r = received power
- d = distance between antennas
- α from 2 to 4

Attenuation in practice

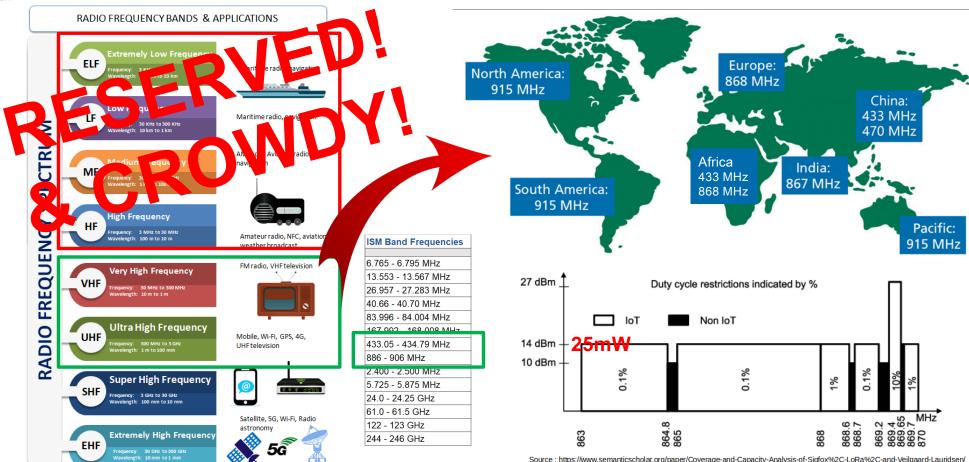
For an ideal antenna (theoretic)

$$\frac{P_t}{P_r} = \frac{(4\pi d)^2}{\lambda^2} = \frac{(4\pi f d)^2}{c^2}$$

Only f and d are variables!

- P_t = transmitted power
- P_r = received power
- P_t / P_r is high when P_r is small \rightarrow high attenuation
- d = distance between antennas
- $c = light speed in space 3.10^8 m/s$
- λ = wave length of the signal=c/f
- Higher frequencies f means higher attenuation!

Lower frequency, lower attenuation

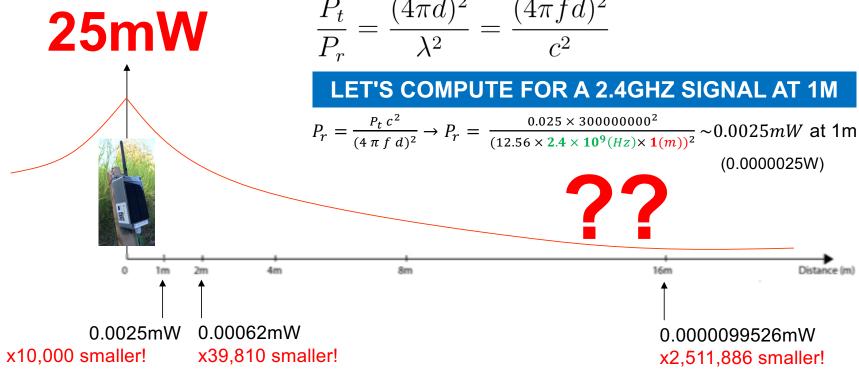


WWW.RFPAGE.COM

AgriFutur

PROGRAMME FRANCE DE RECHERCHE AGROÉCOLOGIE

LPWAN most used frequencies in ISM

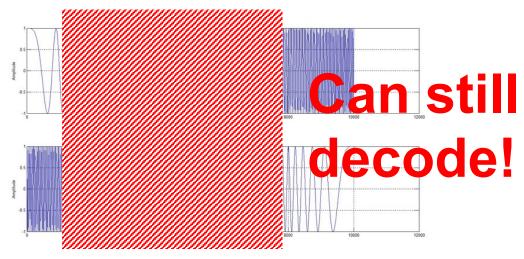


Source: https://www.semanticscholar.org/paper/Coverage-and-Capacity-Analysis-of-Sigfox%2C-LoRa%2C-and-Veilgaard-Lauridsen/

Attenuation, values in watts

Free Space Path Loss model

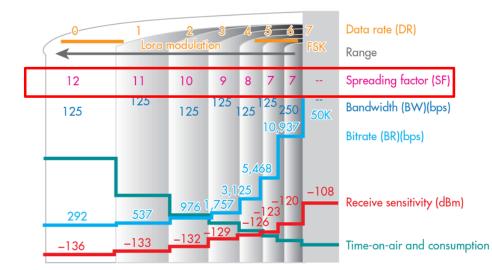
How can we increase range?



- Increase TX power and/or improve RX sensitivity
- RX sensitivity (decoding capability~robustness) can be increased when transmitting slower – like speaking slower!
- → LPWAN have low data rates
- Ex: LoRa technology. Spreading Factor defines how long is a symbol.
 Longer duration more robustness

up chirp → Binary 0

down chirp → Binary 1



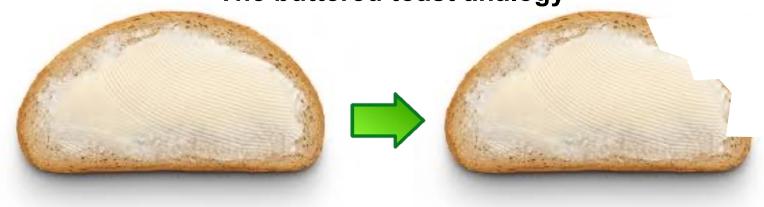
HopeRF RFM series

- The price to pay for LPWAN
- LoRa radio has very low throughput 200bps - 37500bps 0.2kbps - 37.5kbps
- Spreading Factor Sensitivity time-on-air

WiFi 802.11n: 450 000 000 bps (450Mbps) WiFi 802.11g: 54 000 000 bps (54Mbps) Bluetooth3&4: 25 000 000 bps (25Mbps) Bluetooth BLE: 2 000 000 bps (2Mbps)

3G/4G: 20Mbps-200Mbps

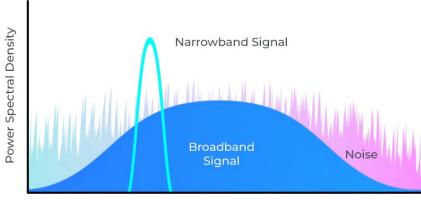
LoRa: 200bps – 37500bps (0.0002 –0.0375Mbps) 3G/LoRa ratio: 20,000,000bps/200bps = 100000!



DISTRIBUTE to be more robust!

The buttered toast analogy

- Assuming you could get back ALL your butter, how much butter did you loose?
- This is the idea behind **spread spectrum** techniques: the more you "spread", the more it is robust to interferences


Another solution: BE INVISIBLE!

- Ultra-narrow band (UNB) of about only 100Hz (e.g. SigFox) M SIGFOX
- High frequency diversity from one message to another
- Narrowband reduces noise and increases transmission quality

But decoding is much more

complex...

		JULIAN SIGION	
Frequency band	868/915 MHz	868/915 MHz	
Physical layer	CSS - Chirp Spread Spectrum	UNB – Ultra Narrow Band	
Spreading factor	$2^7 - 2^{12}$	NA	
Channel bandwidth	125 kHz to 500 kHz	100 Hz (UL) 600 Hz (DL)	
UL (upload) data rate	29-50 kbps	100 bps	
DL (download) data rate	27-50 Kbps	600 bps	
Efficiency (bit/s/Hz)	0.12	0.05	
Doppler sensitivity	Up to 40 ppm	Unconstrained	
Max <u>Tx</u> power	EU: +14 dBm	EU: +14 dBm	
	US:+23 dBm	US:+23 dBm	
Max link budget	156 dB	156 dB	

Frequency Sigfox Ultra Narrow Band

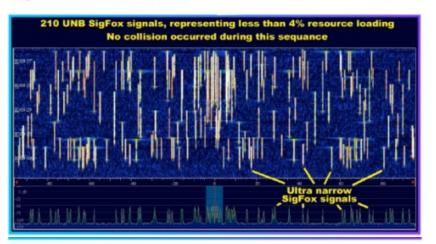


Image credit: Spakfun and https://www.linuxembedded.fr/2020/03/introduction-a-sigfox 22/45

More than 1000 times smaller!

Where to search?

The well known "needle in a haystack" problem

You need to have some clue

- Top?
- Bottom?
- Left?
- Right?
- Middle?
- ...

Or be able to look everywhere

... at the same time!

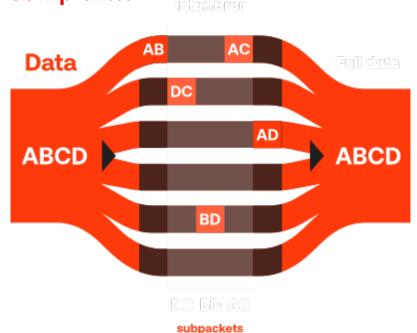
rot. Congduc Pham

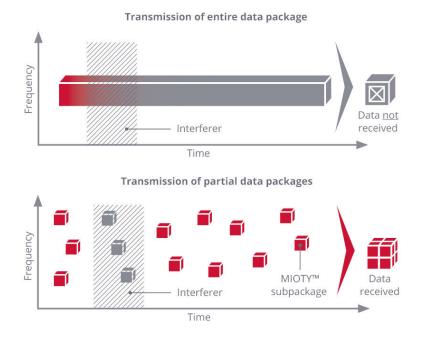
AgriFutur

Find in a "reasonable" time?

- Sigfox base stations operate with very wideband receivers (typically tens of kHz to several MHz).
- Continuously monitor the whole usable ISM band → need high-end & costly hardware!
- Detect "energy spikes" using FFT + envelope detection
- Appears as a thin peak in the base station's frequency spectrum
- Identifies candidate signals & applies Sigfox demodulation

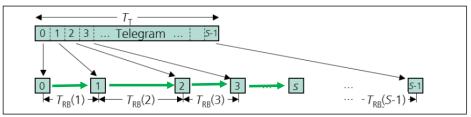
www.jolyon.co.uk




Even smarter! Distribute AND be invisible!

 A new comer: mioty technology based on Telegram-Splitting-UNB

Again, decoding is much more complex...



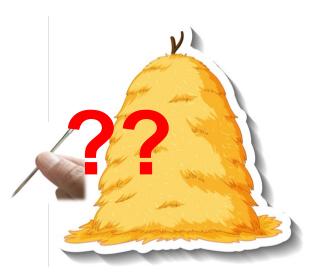
Telegram-Splitting

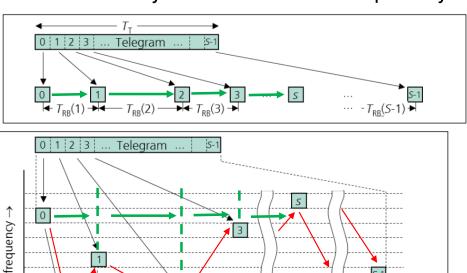
- Developed by Fraunhofer IIS now an ETSI standard
- Randomness everywhere! Random time intervals & frequency carriers

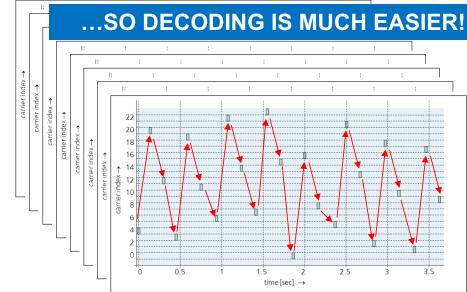
Packet (telegram) split into a minimum of 24 burst (core frame) Each burst is sent on a

- different frequency (up to 34)
- Each burst is separated from the others by a certain time
- Each burst includes 1/3 of sync data (but no identification)
- Information is triplicated to support collision
- **Creates time and frequency** diversity with redundancy

Author – Paul Pinault / Disk91.com




Needle in a haystack?


mioty uses TS-UNB, so do we have the "needle in a haystack" issue?

 $time \rightarrow$

mioty uses time and frequency diversity

BUT USES 8 PRE-DEFINED PATTERNS

sub-packets

anr®

LoRa, Sigfox, mioty: common point?

- LoRa: Spread Spectrum
- Sigfox: Ultra-Narrow-Band
- mioty: Ultra-Narrow-Band + Telegram Splitting

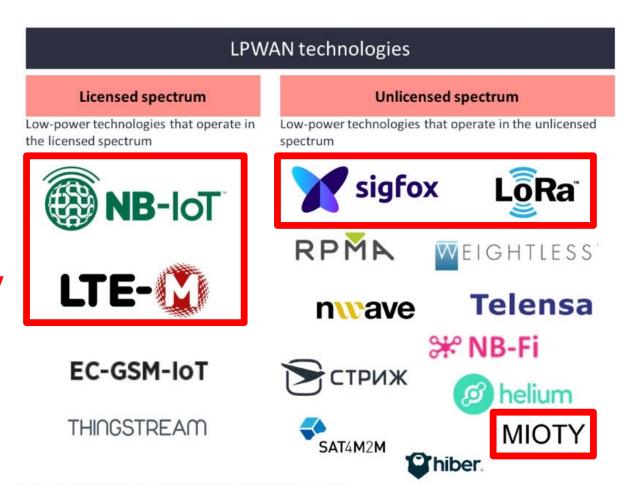
WHY ALL THESE HASSLES?

BECAUSE THEY USE UNLICENSED BANDS!

AND SO?

ANYBODY CAN USE THESE BANDS, NEED TO BE MORE ROBUST & SMARTER!

WHAT IF LICENSED BAND?


The LPWAN actors

anr®

Historically, LTE (4G) technology

Included in 5G
Massive IoT family
(mMTC)

Source: IoT Analytics LPWAN Market Report 2018 - 2023

NB-IoT & LTE-M solutions

- They both come from mobile cellular technologies
- They operate in **licensed bands** assigned to operators
 - → Quality-of-Service needs (somehow) to be provided
- They use **scheduled** channel access
 - → Devices cannot transmit whenever they want
 - → Base station assigns radio resources and transmission times
 - → When, how long, and on which subcarriers (e.g. frequency)

LTE-M is optimized for mobile, higher-data, low-latency IoT with support for voice and handover > ~lightweight 4G for IoT

NB-IoT is optimized for massive, deep-coverage, low-power, low-data, static IoT → specifically designed for IoT

What your mother never told you...

 Despites all these smart mechanisms, obtaining several kms range at low power is still very challenging!

HIGH OVERHEAD, LOW TRANSFER EFFICIENCY!

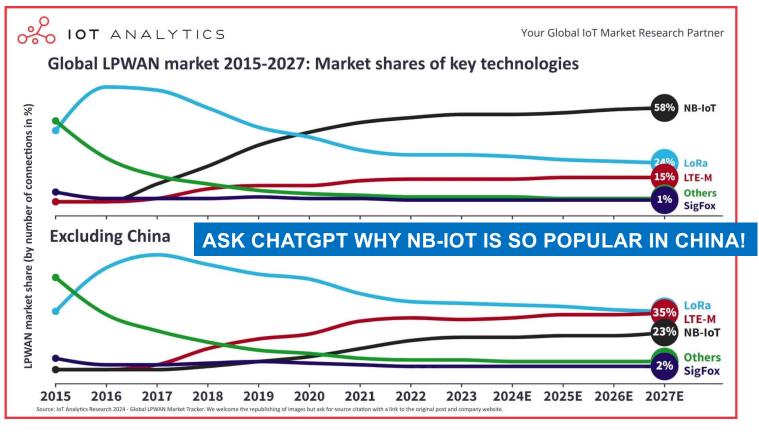
REDUNDANCY & REPETITION FOR ROBUSTNESS

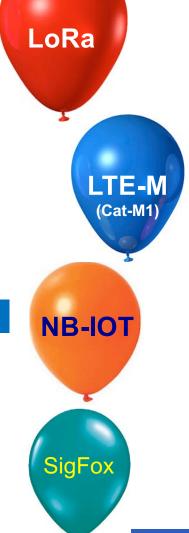
LORAWAN RECOMMENDS 2-3 REPETITIONS, SIGFOX USES 3

MIOTY'S OVERHEAD IS USUALLY 300-500%

NB-IoT CAN HAVE FROM 2 TO 128 REPETITIONS (DEEP)

LTE-M CAN HAVE 2, 4 OR 8 REPETITIONS


rof. Congduc Pham


AgriFutur

2025: the 4 (3?) that counts!

Opening an interesting question!

Technology	Open Standard?	PHY	Operator Required?	Private Network?
LoRaWAN	√ Yes	LoRa = proprietary	X No	✓ Yes
mioty	√ Yes	√ Standard	X No	✓ Yes
Sigfox	X No	Proprietary	✓ Yes	X No (few exceptions)
NB-IoT	✓ Yes (3GPP)	Standard	✓ Yes	X No
LTE-M	✓ Yes (3GPP)	Standard	✓ Yes	X No

THE MAIN NEED IS INTEROPERABILITY!

How to decide?

a years at onicon Li

Working on Wi-SUN

 Member of the SubGig a Proprietary Organization

Standards-Based LPWAN Solutions

Ecosystem

- Open and flexible
- Collaborative, favor interoperability

Innovation

- · Distributed across multiple participants
- Inertia
 - High: it often takes time to drive changes
 - Guarantees a certain stability
- Efficiency
 - Based on compromises: depending on the network, it can be either an advantage or a drawback

Proprietary LPWAN Solutions

Ecosystem

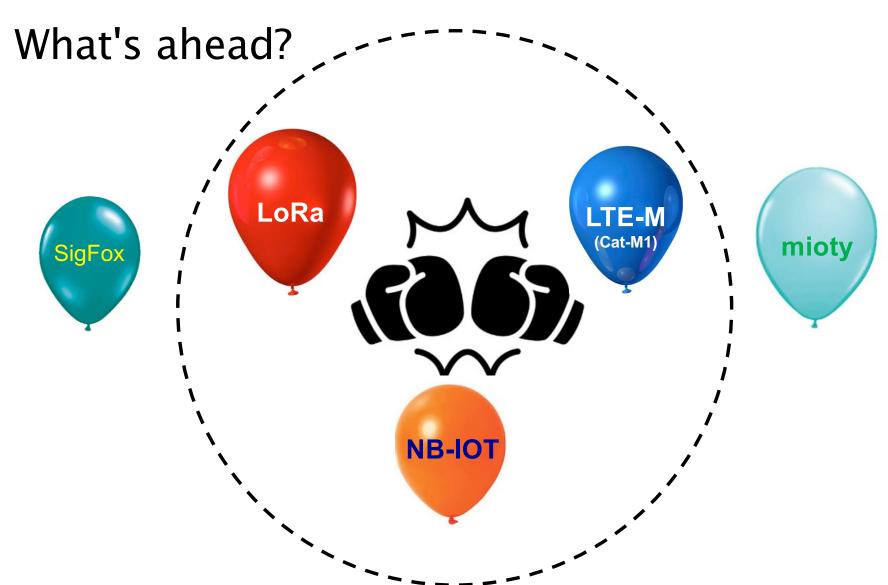
- Integration is seamless across the vendor's products.
- Ease of use and time to market
- Closed

Innovation

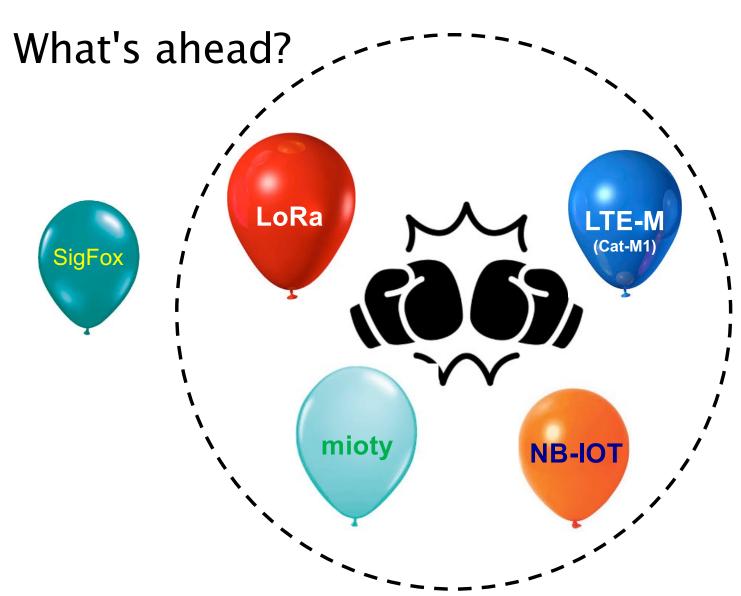
- · Controlled and centralized
- Can be more versatile
- Harder for the end user to influence decisions

Inertia

Low or high: Depends on the customer / provider relationship


Efficiency

Vertical optimization: Can be tailored to the targeted applications



Dominant in

- Trackers (logistics, pets, assets)
- Wearables, alarms, emergency devices
- Smart appliances
- Industrial monitoring requiring more data

MOBILITY SUPPORT AND

THE ONLY LPWAN WITH REAL

Dominant in

- Agriculture
- Municipal or campus networks
- Smart buildings
- Logistics sensors with low message frequency

What's ahead?

THE ONLY LPWAN DESIGNED

FROM DAY ONE FOR ULTRA-

ENVIRONMENTS AT MASSIVE

ROBUST INDUSTRIAL

EASY TO DEPLOY, PRIVATE NETWORKS LOW COST, AND FLEXIBILITY THAT **OPERATORS CANNOT MATCH**

LoRa

domair

DOWNLINK PERFORMANCE LTE-M

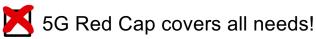
Dominant in

- Oil & gas
- Mining
- Industry 4.0
- High-noise or high-interference environments
- Large-area monitoring (pipelines, railways)

SCALE

- Smart city sensors
- **Environmental monitoring**

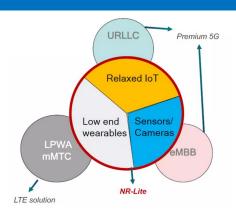
40/4J


(Cat-M1) LTE-M is only interesting when there are needs for \ **UTILITIES AND GOVERNMENTS** PREFER LICENSED SPECTRUM. mobility and sligtly Mioty and higher data rate **NATIONAL OPERATOR NB-IoT COVERAGE, AND LONG-TERM STANDARDIZATION** may mioty NB-101 compete Dominant in on smart Water/gas/electricity smart metering metering/ Parking

Anything new at sight?

• 5G RedCap – A little quizz?

5G Remote Edge Device – Connected Appliance Protocol


5G Radio Early Data – Channel Access Procedure

5G Reduced Capability

5G Robust Embedded Demodulator – Cognitive Adaptive PHY

5G Redundant Encoded Datagram – Channel-Agile Partitioning

LET'S SEE...

WHO WILL BE THE USERS...

Prot. Congduc Pham http://www.univ-pau.fr/~cpha

41/45

Going beyond terrestrial network!

With no obstacle, we can reach a satellite!

https://www.everythingrf.com/community/what-is-satellite-iot-connectivity

https://www.smartsight.in/industry-insights/iot-for-wildlife-conservation-and-environmental-monitoring/

EchoStar XXI satellite

Formely TerreStar 2, launched in 2017 Geostationary satellite, S-band 2GHz Huge transponder of 18 meters!

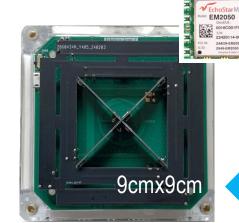
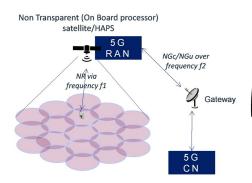


Image credit: EchoStar

https://github.com/nguyenmanhthao996tn/LEAT-EchoStar-Terminal-BSP


IoT connectivity battle going to space!

- Non-Terrestrial Networks (NTN) & Direct-to-Satellite (DtS) IoT
- DtS version of LoRa PHY for more robustness → Semtech LR-FHSS
- mioty can easily be extended to DtS communications
- NB-IoT for DtS is challenging but possible

BUT TRADITIONAL CELLULAR ACTORS WANT THEIR SHARE!

 Cellular Network standards such as 5G NTN and future 6G with native NTN support

43/45

Prot. Congduc Pham http://www.univ-pau.fr/~cphan

AgriFutur

What about research?

- PHY & MAC Layer Optimization
- Energy optimization
- Interference mitigation
- Massive network scalability
- Security & privacy
- AI/ML-driven adaptive networking
- Geolocation & mobility enhancement
- Industrial robustness
- Multi-technology integration with 5G

MY MAIN INTERESTS

How to reduce congestion?

How to support very dense scenarios?

Coexistence of technologies in the ISM bands

Spectrum sharing strategies

Conclusions

- LPWANs are here to stay!
- Technology maturation is already here!
- From application perspective, it is great!
- From research perspective, well...we can study, evaluate, propose...
- ... but will be marginal change to "standards" (see Ethernet, WiFi, ...)
- Innovative applications with more open technologies
 - Collaboration between devices in P2P & mesh
 - Hybrid and continuity of access: multi-radio, terrestrial, non-terrestrial, ...
- Ad-hoc deployments with application-specific mechanisms in agriculture, agroecology, environment, wildlife, ...

STILL EXCITING RESEARCH BEFORE I RETIRE!